Hsu-Robbins theorem for the correlated sequences

Ciprian A. Tudor

Université de Lille 1

Colloque Franco-Roumain de Mathématiques Appliquées Poitiers, AOUT 2010

Plan

Classical Hsu-Robbins theorem Variations of the fractional Brownian motion Multiple stochastic integrals Hsu-Robbins theorem for the increments of the fBm Moving averages

1 Classical Hsu-Robbins theorem

2 Variations of the fractional Brownian motion

3 Multiple stochastic integrals

4 Hsu-Robbins theorem for the increments of the fBm

5 Moving averages

(4 回) (4 回) (4 回)

Hsu-Robbins and Erdös

A famous result by Hsu and Robbins (1947) says that if $X_1, X_2, ...$ is a sequence of independent identically distributed random variables with zero mean and finite variance and

$$S_n:=X_1+\ldots+X_n,$$

then

$$\sum_{n\geq 1} P\left(|S_n| > \varepsilon n\right) < \infty$$

for every $\varepsilon > 0$.

- 4 同 6 4 日 6 4 日 6

Note that, by the law of large numbers,

$$\frac{S_n}{n} \to_{n \to \infty} 0 = \mathbf{E}(X_1)$$

so

$$P(|S_n| > \varepsilon n) = P\left(\left|\frac{S_n}{n}\right| > \varepsilon\right) \to_{n \to \infty} 0$$

for every $\varepsilon > 0$.

So, the result of Hsu-Robbins says that if the variance of X_1 is finite, this convergence is strong enough to ensure the summability of the series.

Later, Erdös (1949) showed that the converse implication also holds, namely if the series

$$\sum_{n\geq 1} P(|S_n| > \varepsilon n)$$

is finite for every $\varepsilon > 0$ and X_1, X_2, \ldots are independent and identically distributed, then $\mathbf{E}X_1 = 0$ and $\mathbf{E}X_1^2 < \infty$.

Since then, many authors extended this result in several directions.

Spitzer's showed that

$$\sum_{n\geq 1}\frac{1}{n}P\left(|S_n|>\varepsilon n\right)<\infty$$

for every $\varepsilon > 0$ if and only if $\mathbf{E}X_1 = 0$ and $\mathbf{E}|X_1| < \infty$.

So, one introduces the factor $\frac{1}{n}$ to "help" the convergence of the series and one needs a weaker conditions on the moments

Also, Spitzer's theorem has been the object of various generalizations and variants.

One of the problems related to the Hsu-Robbins' and Spitzer's theorems is to find the precise asymptotic as

$$\varepsilon \rightarrow 0$$

of the quantities

$$\sum_{n\geq 1} P(|S_n| > \varepsilon n)$$

and

.

$$\sum_{n\geq 1}\frac{1}{n}P(|S_n|>\varepsilon n)$$

Obviously, these sequences goes to ∞ when $\varepsilon \to 0$.

Heyde (1975) showed that

$$\lim_{\varepsilon \to 0} \varepsilon^2 \sum_{n \ge 1} P\left(|S_n| > \varepsilon n\right) = \mathbf{E} X_1^2 \tag{1}$$

whenever $\mathbf{E}X_1 = 0$ and $\mathbf{E}X_1^2 < \infty$. In the case when X is attracted to a stable distribution of exponent $\alpha > 1$, Spataru proved that

$$\lim_{\varepsilon \to 0} \frac{1}{-\log \varepsilon} \sum_{n \ge 1} \frac{1}{n} P(|S_n| > \varepsilon n) = \frac{\alpha}{\alpha - 1}.$$
 (2)

It also holds for the Gaussian case : the limit is 2

Variations of the fractional Brownian motion

Our purpose is to prove Hsu-Robbins and Spitzer's theorems for sequences of correlated random variables, related to the increments of fractional Brownian motion or to moving averages sequences

Recall that the fractional Brownian motion $(B_t^H)_{t\in[0,1]}$ is a centered Gaussian process with covariance function $R^H(t,s) = \mathbf{E}(B_t^H B_s^H) = \frac{1}{2}(t^{2H} + s^{2H} - |t-s|^{2H})$. It can be also defined as the unique self-similar Gaussian process with stationary increments.

- 4 同 2 4 日 2 4 日 2

Concretely, in this paper we will study the behavior of the tail probabilities of the sequence

$$V_{n} = \sum_{k=0}^{n-1} H_{q} \left(n^{H} \left(B_{\frac{k+1}{n}} - B_{\frac{k}{n}} \right) \right)$$
(3)
$$=_{(d)} \sum_{k=0}^{n-1} H_{q} \left(B_{k+1} - B_{k} \right)$$

where *B* is a fractional Brownian motion with Hurst parameter $H \in (0,1)$ (in the sequel we will omit the superscript *H* for *B*) and H_q is the Hermite polynomial of degree $q \ge 1$ given by $H_q(x) = (-1)^q e^{\frac{x^2}{2}} \frac{d^q}{dx^q} (e^{-\frac{x^2}{2}}).$

If
$$q=1$$
 we have $X_k=n^H\left(B_{rac{k+1}{n}}-B_{rac{k}{n}}
ight)$ and $\mathbf{E}X_kX_l
eq 0$

(unless
$$H = \frac{1}{2}$$
.)
If $q = 2$ then

$$X_k = H_2 \left(n^H \left(B_{\frac{k+1}{n}} - B_{\frac{k}{n}} \right) \right)$$

$$= \left(n^H \left(B_{\frac{k+1}{n}} - B_{\frac{k}{n}} \right) \right)^2 - 1.$$

<ロ> (四) (四) (三) (三) (三) (三)

In our case the variables are correlated. Indeed, for any $k,l\geq 1$ we have

$$\mathsf{E}(H_q(B_{k+1} - B_k)H_q(B_{l+1} - B_l)) = \frac{1}{(q!)}\rho_H(k-l)^q$$

where the correlation function is

$$\rho_H(k) = \frac{1}{2} \left((k+1)^{2H} + (k-1)^{2H} - 2k^{2H} \right)$$

which is not equal to zero unless $H = \frac{1}{2}$ (which is the case of the standard Brownian motion).

The convergence of the sequence V_n .

Let $q \ge 2$ an integer and let $(B_t)_{t\ge 0}$ a fractional Brownian motion with Hurst parameter $H \in (0, 1)$. Then, with some explicit positive constants $c_{1,q,H}, c_{2,q,H}$ depending only on q and H we have

i. If
$$0 < H < 1 - \frac{1}{2q}$$
 then

$$\frac{V_n}{c_{1,q,H}\sqrt{n}} \to_{n \to \infty} N(0,1) \tag{4}$$

ii. If $1 - \frac{1}{2q} < H < 1$ then

$$\frac{V_n}{c_{2,q,H}n^{1-q(1-H)}} \to_{n \to \infty} Z \tag{5}$$

where Z is a Hermite random variable (an iterated stochastic integral)

Example : for q = 2 we have the quadratic variations of the fBm which converge as follows : if

$$H < \frac{3}{4}$$

these variations converge (after normalization) to the normal law and if

$$H > \frac{3}{4}$$

these variations converges (after normalization) to a non-Gaussian law (double stochastic integral, Rosenblatt)

Our purpose : prove precise asymptotics in Hsu-Robbins theorem for V_n , that is look to the quantities

$$\sum_{n\geq 1} P\left(|V_n| > \varepsilon n\right)$$

and

$$\sum_{n\geq 1}\frac{1}{n}P(|V_n|>\varepsilon n)$$

-no problems related to the existence of moments

-for every $\varepsilon > 0$ the above series are convergent

- we will use chaos expansion and Malliavin calculus (the so -called Stein method)

Multiple Wiener-Itô integrals

Let $(W_t)_{t \in [0,1]}$ a standard Wiener process.

If $f \in L^2([0,1]^n)$ we define the multiple Wiener integral of f with respect to W

Let f be a step function $(f \in S)$, that means

$$f = \sum_{i_1,\ldots,i_n} c_{i_1,\ldots,i_n} \mathbf{1}_{A_{i_i} \times \ldots \times A_{i_n}}$$

(here $c_{i_1,...,i_n} = 0$ if two indices i_k and i_l are equal and the sets $A_i \in \mathcal{B}([0, 1])$ are disjoint). We define for such a step function

$$I_n(f) = \sum_{i_1,\ldots,i_n} c_{i_1,\ldots,i_n} W(A_{i_1}) \ldots W(A_{i_n})$$

where e.g. $W([a, b]) = W_b - W_a$.

We have that

 \bullet the application I_n is an isometry on ${\mathcal S}$, i.e.

$$E(I_n(f)I_m(g)) = n! \langle f, g \rangle_{L^2([0,1]^n)}$$
 if $m = n$

and

$$\mathbf{E}(I_n(f)I_m(g)) = 0$$
 if $m \neq n$

• the set S is dense in $L^2([0,1]^n)$ Therefore I_n can be extended to an isometry from $L^2([0,1]^n)$ to $L^2(\Omega)$.

 $I_n(f) = I_n(\tilde{f})$ where \tilde{f} is the symmetrization of f

Remark : *I_n* can be viewed as an iterated stochastic Itô integral

$$I_n(f) = n! \int_0^1 \int_0^{t_n} \dots \int_0^{t_2} f(t_1, \dots, t_n) dW_{t_1} \dots dW_{t_n}$$

イロン イヨン イヨン イヨン

Hermite random variable

The Hermite random variable of order $q \ge 1$ that appears as limit in the above theorem is defined as

$$Z = d(q, H)I_q(L) \tag{6}$$

where the kernel $L \in L^2([0,1]^q)$ is given by

$$L(y_1,\ldots,y_q)=\int_{y_1\vee\ldots\vee y_q}^1\partial_1 K^H(u,y_1)\ldots\partial_1 K^H(u,y_q)du.$$

The constant d(q, H) is a positive normalizing constant that guarantees that $\mathbf{E}Z^2 = 1$ and K^H is the standard kernel of the fractional Brownian motion. We will not need the explicit expression of this kernel. Note that the case q = 1 corresponds to the fractional Brownian motion and the case q = 2 corresponds to the Rosenblatt process.

Let us denote, for every $\varepsilon > 0$,

$$f_{1}(\varepsilon) = \sum_{n \ge 1} \frac{1}{n} P\left(V_{n} > \varepsilon n\right) = \sum_{n \ge 1} \frac{1}{n} P\left(Z_{n}^{(1)} > c_{1,q,H}^{-1} \varepsilon \sqrt{n}\right) \quad (7)$$

where

$$Z_n^{(1)} = \frac{V_n}{c_{1,q,H}\sqrt{n}}$$

・ロト ・回ト ・ヨト ・ヨト

æ

while if $1 - \frac{1}{2a} < H < 1$, we are interested in

$$f_{2}(\varepsilon) = \sum_{n \ge 1} \frac{1}{n} P\left(V_{n} > \varepsilon n^{2-2q(1-H)}\right) = \sum_{n \ge 1} \frac{1}{n} P\left(Z_{n}^{(2)} > c_{2,q,H}^{-1} \varepsilon n^{1-q(1-H)}\right)$$
(8)

where

$$Z_n^{(2)} = \frac{V_n}{c_{2,q,H} n^{1-q(1-H)}}$$

・ロン ・回 と ・ヨン ・ヨン

It is natural to consider the tail probability of order $n^{2-2q(1-H)}$ because the L^2 norm of the sequence V_n is in this case of order $n^{1-q(1-H)}$.

We are interested to study the behavior of $f_i(\varepsilon)$ (i = 1, 2) as $\varepsilon \to 0$.

For a given random variable X, we set $\Phi_X(z) = P(|X| > z) = 1 - P(X < z) + P(X < -z).$

The first lemma gives the asymptotics of the functions $f_i(\epsilon)$ as $\epsilon \to 0$ when $Z_n^{(i)}$ are replaced by their limits. Consider c > 0.

i. Let $Z^{(1)}$ be a standard normal random variable. Then as

$$\frac{1}{-\log c\varepsilon}\sum_{n\geq 1}\frac{1}{n}\Phi_{Z^{(1)}}(c\varepsilon\sqrt{n})\to_{\varepsilon\to 0} 2.$$

ii. Let $Z^{(2)}$ be a Hermite random variable or order q given by (6). Then, for any integer $q \ge 1$

$$\frac{1}{-\log c\varepsilon}\sum_{n\geq 1}\frac{1}{n}\Phi_{Z^{(2)}}(c\varepsilon n^{1-q(1-H)})\rightarrow_{\varepsilon\rightarrow 0}\frac{1}{1-q(1-H)}.$$

Let $q \ge 2$ and c > 0. i. If $H < 1 - \frac{1}{2q}$, let $Z^{(1)}$ be standard normal random variable. Then it holds

$$\frac{1}{-\log c\varepsilon} \left[\sum_{n\geq 1} \frac{1}{n} P\left(|Z_n^{(1)}| > c\varepsilon\sqrt{n} \right) - \sum_{n\geq 1} \frac{1}{n} P\left(|Z^{(1)}| > c\varepsilon\sqrt{n} \right) \right]$$
$$\rightarrow_{\varepsilon\to 0} 0.$$

・ロン ・回 と ・ ヨ と ・ ヨ と

ii. Let $Z^{(2)}$ be a Hermite random variable of order $q \ge 2$ and $H > 1 - \frac{1}{2q}$. Then

$$\frac{1}{-\log c\varepsilon} \left[\sum_{n\geq 1} \frac{1}{n} P\left(|Z_n^{(2)}| > c\varepsilon n^{1-q(1-H)} \right) - \sum_{n\geq 1} \frac{1}{n} P\left(|Z^{(2)}| > c\varepsilon n^{1-q(1-H)} \right) \right]$$
$$\rightarrow_{\varepsilon\to 0} 0.$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Idea of the proof

For the part i), it is based on Stein's method and Malliavin calculus (F is arbitrary, $Z \sim N(0, 1)$) (Nourdin -Peccati)

$$\sup_{z \in \mathbb{R}} |P(F < z) - P(Z < z)| = \sup_{z \in \mathbb{R}} \left| \mathsf{E} \left(f'_z(F) - Ff_z(F) \right) \right|$$

where f_z is the solution of the Stein's equation

$$1_{(-\infty,z)}(x) - P(Z < z) = f'(x) - xf(x), \quad x \in \mathbb{R}.$$

Since

$$\mathbf{E}Ff(F) = \mathbf{E}\delta D(-L)^{-1}Ff(F) = \mathbf{E}f'(F)\langle D(-L)^{-1}F, DF \rangle$$

we obtain

$$\sup_{z \in \mathbb{R}} |P(F < z) - P(Z < z)| \leq \left(\mathsf{E}(1 - \langle DF, D(-L)^{-1}F \rangle)^2 \right)^{\frac{1}{2}}$$

D is the Malliavin derivative, L the Ornstein-Uhlenbeck operator

・ロト ・日本 ・ヨト ・ヨト

æ

To get a feeling

$$D_sW_t = \mathbb{1}_{[0,t]}(s)$$

$$D_s W_t^n = n W_t^{n-1} D_s W_t$$

$$D_s I_n(f) = I_{n-1}(f_n(\cdot, s))$$

$$(-L)^{-1}I_n(f) = \frac{1}{n}I_n(f)$$

イロン イヨン イヨン イヨン

Э

It follows that

$$\begin{split} \sup_{x \in \mathbb{R}} & \left| P\left(Z_n^{(1)} > x \right) - P\left(Z^{(1)} > x \right) \right| \\ \leq c \begin{cases} \frac{1}{\sqrt{n}}, & H \in (0, \frac{1}{2}] \\ n^{H-1}, & H \in [\frac{1}{2}, \frac{2q-3}{2q-2}) \\ n^{qH-q+\frac{1}{2}}, & H \in [\frac{2q-3}{2q-2}, 1-\frac{1}{2q}). \end{cases} \end{split}$$

æ

and this implies that

$$\begin{split} &\sum_{n\geq 1} \frac{1}{n} \sup_{x\in\mathbb{R}} \left| P\left(Z_n^{(1)} > x \right) - P\left(Z^{(1)} > x \right) \right| \\ &\leq c \left\{ \begin{array}{l} \sum_{n\geq 1} \frac{1}{n\sqrt{n}}, \quad H \in (0, \frac{1}{2}] \\ \sum_{n\geq 1} n^{H-2}, \quad H \in [\frac{1}{2}, \frac{2q-3}{2q-2}) \\ \sum_{n\geq 1} n^{qH-q-\frac{1}{2}}, \quad H \in [\frac{2q-3}{2q-2}, 1-\frac{1}{2q}). \end{array} \right. \end{split}$$

and the last sums are finite (for the last one we use $H < 1 - \frac{1}{2q}$).

・ロト ・回ト ・ヨト ・ヨト

æ

We state now the Spitzer's theorem for the variations of the fractional Brownian motion. Let f_1, f_2 be given by

$$f_{1}(\varepsilon) = \sum_{n \ge 1} \frac{1}{n} P(V_{n} > \varepsilon n) = \sum_{n \ge 1} \frac{1}{n} P\left(Z_{n}^{(1)} > c_{1,q,H}^{-1} \varepsilon \sqrt{n}\right) \quad (9)$$

and

$$f_{2}(\varepsilon) = \sum_{n \ge 1} \frac{1}{n} P\left(V_{n} > \varepsilon n^{2-2q(1-H)}\right) = \sum_{n \ge 1} \frac{1}{n} P\left(Z_{n}^{(2)} > c_{2,q,H}^{-1} \varepsilon n^{1-q(1-H)}\right)$$
(10)

イロン イヨン イヨン イヨン

i. If
$$0 < H < 1 - \frac{1}{2q}$$
 then

$$\lim_{\varepsilon \to 0} \frac{1}{\log(c_{1,H,q}^{-1}\varepsilon)} f_1(\varepsilon) = 2.$$
ii. If $1 > H > 1 - \frac{1}{2q}$ then

$$\lim_{\varepsilon \to 0} \frac{1}{\log(c_{2,H,q}^{-1}\varepsilon)} f_2(\varepsilon) = \frac{1}{1 - q(1 - H)}.$$

<ロ> (四) (四) (三) (三) (三) (三)

Plan

Classical Hsu-Robbins theorem Variations of the fractional Brownian motion Multiple stochastic integrals Hsu-Robbins theorem for the increments of the fBm Moving averages

for every $\varepsilon > 0$

$$g_1(\varepsilon) = \sum_{n \ge 1} P(|V_n| > \varepsilon n)$$
(11)

if $H < 1 - \frac{1}{2q}$ and by

$$g_2(\varepsilon) = \sum_{n \ge 1} P\left(|V_n| > \varepsilon n^{2-2q(1-H)}\right)$$
(12)

if $H > 1 - \frac{1}{2q}$ and we estimate the behavior of the functions $g_i(\varepsilon)$ as $\varepsilon \to 0$. Note that we can write

$$g_1(\varepsilon) = \sum_{n \ge 1} P\left(|Z_n^{(1)}| > c_{1,q,H}^{-1} \varepsilon \sqrt{n} \right)$$

$$g_2(\varepsilon) = \sum_{n \ge 1} P\left(|Z_n^{(2)}| > c_{2,q,H}^{-1} \varepsilon n^{1-q(1-H)} \right)$$

Plan

Classical Hsu-Robbins theorem Variations of the fractional Brownian motion Multiple stochastic integrals Hsu-Robbins theorem for the increments of the fBm Moving averages

We decompose it as : for $H < 1 - \frac{1}{2a}$

$$g_{1}(\varepsilon) = \sum_{n \geq 1} P\left(|Z^{(1)}| > c_{1,q,H}^{-1} \varepsilon \sqrt{n}\right) \\ + \sum_{n \geq 1} \left[P\left(|Z_{n}^{(1)}| > c_{1,q,H}^{-1} \varepsilon \sqrt{n}\right) - P\left(|Z^{(1)}| > c_{1,q,H}^{-1} \varepsilon \sqrt{n}\right) \right].$$

and for
$$H > 1 - \frac{1}{2q}$$

$$= \sum_{n \ge 1}^{q} P\left(|Z^{(2)}| > \varepsilon c_{2,q,H}^{-1} n^{1-q(1-H)}\right) + \sum_{n \ge 1}^{q} \left[P\left(|Z^{(2)}_{n}| > c_{2,q,H}^{-1} \varepsilon n^{1-q(1-H)}\right) - P\left(|Z^{(2)}| > c_{2,q,H}^{-1} \varepsilon n^{1-q(1-H)}\right)\right]$$

・ロト ・回ト ・ヨト ・ヨト

æ

Theorem

Let $q \ge 2$. Let $Z^{(1)}$ be a standard normal random variable, $Z^{(2)}$ a Hermite random variable of order $q \ge 2$. Then

i. If
$$0 < H < 1 - \frac{1}{2q}$$
, we have
 $(c_{1,q,H}^{-1}\varepsilon)^2 g_1(\varepsilon) \rightarrow_{\varepsilon \to 0} 1 = \mathbf{E}Z^{(1)}$.
ii. If $1 - \frac{1}{2q} < H < 1$ we have
 $(c_{2,q,H}^{-1}\varepsilon)^{\frac{1}{1-q(1-H)}} g_2(\varepsilon) \rightarrow_{\varepsilon \to 0} \mathbf{E}|Z^{(2)}|^{\frac{1}{1-q(1-H)}}$

・ロン ・回と ・ヨン ・ヨン

Joint work with Solesne Bourguin (Paris 1) we will consider long memory moving averages defined by

$$X_n = \sum_{i \ge 1} a_i \varepsilon_{n-i}, n \in \mathbb{Z}$$

where the innovations ε_i are centered i.i.d. random variables having at least finite second moments and the moving averages a_i are of the form $a_i = i^{-\beta}L(i)$ with $\beta \in (\frac{1}{2}, 1)$ and L slowly varying towards infinity. The covariance function $\rho(m) = \mathbf{E}(X_0X_m)$ behaves as $c_{\beta}m^{-2\beta+1}$ when $m \to \infty$ and consequently is not summable since $\beta > \frac{1}{2}$. Therefore X_n is usually called long-memory or "long-range dependence" moving average.

Let K be a deterministic function which has Hermite rank q and satisfies $\mathbf{E}(K^2(X_n)) < \infty$ and define

$$S_N = \sum_{n=1}^N \left[\mathcal{K}(X_n) - \mathbf{E} \left(\mathcal{K}(X_n) \right) \right].$$

Suppose that the α_i are regularly varying with exponent $-\beta$, $\beta \in (1/2, 1)$ (i.e. $\alpha_i = |i|^{-\beta} L(i)$ and that L(i) is slowly varying at ∞). S Then i. If $q < (2\beta - 1)^{-1}$, then

$$h_{k,\beta}^{-1} N^{\beta q - \frac{q}{2} - 1} S_N \xrightarrow[N \to +\infty]{} Z^{(q)}$$
(13)

where $Z^{(q)}$ is a Hermite random variable of order q

ロト スポト イヨト イヨト

ii. If $q > (2\beta - 1)^{-1}$, then

$$\frac{1}{\sigma_{k,\beta}\sqrt{N}}S_N \underset{N \to +\infty}{\longrightarrow} \mathcal{N}(0,1)$$
(14)

with $\sigma_{k,\beta}$ a positive constant. Wu (2006), H-C Ho and T. Hsing (1997), Peligrad and Utev (1997)

Take also the innovations ε to be the increments of the Wiener process

$$\varepsilon_i = W_{i+1} - W_i$$

Take $K = H_q$ the Hermite polynomials

・ロン ・回 と ・ ヨ と ・ ヨ と

Note that X_n can also be written as

$$X_{n} = \sum_{i=1}^{\infty} \alpha_{i} \left(W_{n-i} - W_{n-i-1} \right) = \sum_{i=1}^{\infty} \alpha_{i} I_{1} \left(\mathbf{1}_{[n-i-1,n-i]} \right)$$
$$= I_{1} \left(\underbrace{\sum_{i=1}^{\infty} \alpha_{i} \mathbf{1}_{[n-i-1,n-i]}}_{f_{n}} \right) = I_{1} \left(f_{n} \right).$$
(15)

・ロト ・回ト ・ヨト ・ヨト

æ

As $K = H_q$, S_N can be represented as

$$S_{N} = \sum_{n=1}^{N} \left[H_{q}(I_{1}(f_{n})) - \mathbf{E} \left(H_{q}(I_{1}(f_{n})) \right) \right] = \frac{1}{q!} \sum_{n=1}^{N} \left[I_{q}(f_{n}^{\otimes q}) - \mathbf{E} \left(I_{q}(f_{n}^{\otimes q}) - \mathbf{E}$$

・ロト ・回ト ・ヨト ・ヨト

æ

In order to apply the same techniques, we need the speed of convergence of $Z_N = cS_N/\sqrt{N}$ to the normal law, that means, we need to bound

$$\sup_{z\in\mathbb{R}} |\mathbf{P}(Z_N \leq z) - \mathbf{P}(Z \leq z)|$$

- 4 同 6 4 日 6 4 日 6

we will evaluate the quantity

$$\mathbf{E}\left(\left(1-q^{-1}\left\|DZ_{N}\right\|_{\mathcal{H}}^{2}
ight)^{2}
ight).$$

(this is the bound obtained via Malliavin calculus). We have

$$D_t Z_N = D_t \left(\frac{1}{\sigma \sqrt{N}} \sum_{n=1}^N I_q \left(f_n^{\otimes q} \right) \right) = \frac{q}{\sigma \sqrt{N}} \sum_{n=1}^N I_{q-1} \left(f_n^{\otimes q-1} \right) f_n(t)$$

and

$$\|DZ_N\|_{\mathcal{H}}^2 = \frac{q^2}{\sigma^2 N} \sum_{k,l=1}^N I_{q-1}\left(f_k^{\otimes q-1}\right) I_{q-1}\left(f_l^{\otimes q-1}\right) \langle f_k, f_l \rangle_{\mathcal{H}} (16)$$

イロン イヨン イヨン イヨン

æ

The multiplication formula between multiple stochastic integrals gives us that

$$I_{q-1}\left(f_{k}^{\otimes q-1}\right)I_{q-1}\left(f_{l}^{\otimes q-1}\right)$$

$$=\sum_{r=0}^{q-1}r!\left(\begin{array}{c}q-1\\r\end{array}\right)^{2}I_{2q-2-2r}\left(f_{k}^{\otimes q-1-r}\widetilde{\otimes}f_{l}^{\otimes q-1-r}\right)\langle f_{k},f_{l}\rangle_{\mathcal{H}}^{r}.$$

By replacing in (16), we obtain

$$\begin{split} &\|DZ_N\|_{\mathcal{H}}^2\\ = & \frac{q^2}{\sigma^2 N}\sum_{r=0}^{q-1}r! \left(\begin{array}{c} q-1\\ r\end{array}\right)^2 \sum_{k,l=1}^N l_{2q-2-2r}\left(f_k^{\otimes q-1-r}\widetilde{\otimes}f_l^{\otimes q-1-r}\right) \langle f_k,f_l\rangle_{\mathcal{H}}^r \end{split}$$

イロト イヨト イヨト イヨト

æ

Theorem

Under the condition $q > (2\beta - 1)^{-1}$, Z_N converges in law towards $Z \sim \mathcal{N}(0, 1)$. Moreover, there exists a constant C_β , depending uniquely on β , such that, for any $N \ge 1$,

$$\sup_{z\in\mathbb{R}}|\mathbf{P}(Z_N\leq z)-\mathbf{P}(Z\leq z)|\leq C_\beta\left\{\begin{array}{cc}N^{\frac{q}{2}+\frac{1}{2}-q\beta} & \text{if } \beta\in\left(\frac{1}{2},\frac{q}{2q-2}\right)\\N^{\frac{1}{2}-\beta} & \text{if } \beta\in\left[\frac{q}{2q-2},1\right)\end{array}\right.$$

Plan

Classical Hsu-Robbins theorem Variations of the fractional Brownian motion Multiple stochastic integrals Hsu-Robbins theorem for the increments of the Bm Moving averages

$$f_1(\varepsilon) = \sum_{N\geq 1} \frac{1}{N} P(|S_N| > \varepsilon N).$$

when $q > rac{1}{2eta - 1}$

$$\begin{split} f_{1}(\varepsilon) &= \sum_{N \geq 1} \frac{1}{N} P\left(\sigma^{-1} \frac{1}{\sqrt{N}} \left| S_{N} \right| > \frac{\varepsilon \sqrt{N}}{\sigma} \right) \\ &= \sum_{N \geq 1} \frac{1}{N} P\left(\left| Z \right| > \frac{\varepsilon \sqrt{N}}{\sigma} \right) \\ &+ \sum_{N \geq 1} \frac{1}{N} \left[P\left(\sigma^{-1} \frac{1}{\sqrt{N}} \left| S_{N} \right| > \frac{\varepsilon \sqrt{N}}{\sigma} \right) - P\left(\left| Z \right| > \frac{\varepsilon \sqrt{N}}{\sigma} \right) \right] \end{split}$$

where Z denotes a standard normal random variable.

Ciprian A. Tudor Hsu-Robbins theorem for the correlated sequences

E) E

Proposition

When $q > \frac{1}{2\beta - 1}$, $\lim_{\varepsilon \to 0} \frac{1}{-\log(\varepsilon)} f_1(\varepsilon) = 2$ and when $q < \frac{1}{2\beta - 1}$ then $\lim_{\varepsilon \to 0} \frac{1}{-\log(\varepsilon)} f_2(\varepsilon) = \frac{1}{1 + \frac{q}{2} - \beta q}.$

It is also possible to give Hsu-Robbins type results, meaning to find the asymptotic behavior as $\varepsilon \to 0$ of

$$g_1(\varepsilon) = \sum_{N \ge 1} P(|S_N| > \varepsilon N)$$

when $q > \frac{1}{2\beta - 1}$

< □ > < @ > < 注 > < 注 > ... 注